Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.
نویسندگان
چکیده
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.
منابع مشابه
Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking
In this article we consider weak solutions of the three-dimensional incompressible fluid flow equations with initial data admitting a one-dimensional symmetry group. We examine both the viscous and inviscid cases. For the case of viscous flows, we prove that Leray-Hopf weak solutions of the threedimensional Navier-Stokes equations preserve initially imposed symmetry and that such symmetric flow...
متن کاملA pure-compact scheme for the streamfunction formulation of Navier–Stokes equations
A pure-streamfunction formulation is introduced for the numerical simulation of the two-dimensional incompressible Navier–Stokes equations. The idea is to replace the vorticity in the vorticity-streamfunction evolution equation by the Laplacian of the streamfunction. The resulting formulation includes the streamfunction only, thus no inter-function relations need to be invoked. A compact numeri...
متن کاملTurbulent Flow over Cars
In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...
متن کاملThe incompressible Navier-Stokes equations on non-compact manifolds
We shall prove dispersive and smoothing estimates for Bochner type laplacians on some non-compact Riemannian manifolds with negative Ricci curvature, in particular on hyperbolic spaces. These estimates will be used to prove Fujita-Kato type theorems for the incompressible Navier-Stokes equations. We shall also discuss the uniqueness of Leray weak solutions in the two dimensional case.
متن کاملOn the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping
a r t i c l e i n f o a b s t r a c t In this paper, we show that the Cauchy problem of the incompressible Navier–Stokes equations with damping α|u| β−1 u(α > 0) has global strong solution for any β > 3 and the strong solution is unique when 3 < β 5. This improves earlier results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2015